El entrenamiento no supervisado (unsupervised learning en inglés) es un tipo de aprendizaje automático en el que un modelo de machine learning se entrena para encontrar patrones o estructuras en los datos de entrada sin la ayuda de etiquetas o respuestas previas.
A diferencia del entrenamiento supervisado, en el que el modelo se entrena con ejemplos etiquetados que indican las respuestas correctas, en el entrenamiento no supervisado el modelo debe encontrar patrones por sí mismo. Este enfoque es útil en situaciones en las que no hay etiquetas disponibles o cuando no se conocen las respuestas correctas.
Existen varios algoritmos de entrenamiento no supervisado que se utilizan en el aprendizaje automático, como el clustering, la reducción de la dimensionalidad y la detección de anomalías.
El clustering es un algoritmo de agrupamiento que divide los datos en grupos o clusters según la similitud entre ellos, lo que permite identificar patrones o estructuras en los datos. Un ejemplo típico de modelo de clustering son los Mapas Auto-Organizados (SOM).
La reducción de la dimensionalidad es un proceso que reduce la cantidad de variables o características de los datos, lo que puede ayudar a visualizar y analizar los datos de manera más eficiente.
La detección de anomalías es un proceso que busca valores atípicos o excepcionales en los datos, lo que puede ser útil en la detección de fraudes o errores en los datos.
La Cámara Oficial de Comercio de Sevilla, en colaboración con el Instituto Español de Analistas Financieros (IEAF), ofreció el pasado 16 de marzo [...]
Leer más »El chargeback hace referencia a las devoluciones que ocurren cuando, a petición del titular de una tarjeta, el banco solicita en su nombre un reembol [...]
Leer más »Energía barata, infinita, segura y limpia La Inteligencia Artificial desde la investigación de la Fusión Termonuclear a la generación de ventas o [...]
Leer más »La inteligencia artificial (IA) puede cambiar la forma de gestionar los canales de ventas y clientes de las empresas fabricantes y distribuidoras de p [...]
Leer más »