Los datos codificados se refieren a datos que han sido transformados de su formato original a un formato diferente y estructurado, con el fin de que puedan ser procesados de manera más eficiente y efectiva por un sistema de inteligencia artificial o machine learning.
La codificación de datos es un proceso importante en el preprocesamiento de datos, ya que permite que los datos sean más fáciles de leer y entender por los algoritmos de aprendizaje automático. Algunos ejemplos comunes de codificación de datos incluyen la codificación de etiquetas de clase como números enteros, la transformación de valores categóricos en valores numéricos binarios (como en la codificación "one-hot"), o la normalización de los valores numéricos para que se encuentren en un rango específico (como en la normalización min-max).
Los datos codificados son importantes porque permiten que los modelos de inteligencia artificial o machine learning puedan trabajar de manera más eficiente y efectiva con los datos, lo que puede mejorar significativamente la precisión y el rendimiento del modelo.
En un mercado sobresaturado de información como el actual, cada vez es más difícil retener a los usuarios. Para las empresas, la competencia es cad [...]
Leer más »En este artículo vamos a centrarnos en cómo la inteligencia artificial (IA) puede aumentar la eficiencia y reducir los costes de su empresa mediante [...]
Leer más »Para identificar las necesidades del cliente es necesario conocer su opinión, pues esto sirve para detectar dónde debes mejorar, qué aceptación te [...]
Leer más »Fernando Pavón, CEO de Gamco y experto en Inteligencia Artificial aplicada al negocio nos explica en los ciclo de AceleraPYMES cómo las pequeñas em [...]
Leer más »