Los datos codificados se refieren a datos que han sido transformados de su formato original a un formato diferente y estructurado, con el fin de que puedan ser procesados de manera más eficiente y efectiva por un sistema de inteligencia artificial o machine learning.
La codificación de datos es un proceso importante en el preprocesamiento de datos, ya que permite que los datos sean más fáciles de leer y entender por los algoritmos de aprendizaje automático. Algunos ejemplos comunes de codificación de datos incluyen la codificación de etiquetas de clase como números enteros, la transformación de valores categóricos en valores numéricos binarios (como en la codificación "one-hot"), o la normalización de los valores numéricos para que se encuentren en un rango específico (como en la normalización min-max).
Los datos codificados son importantes porque permiten que los modelos de inteligencia artificial o machine learning puedan trabajar de manera más eficiente y efectiva con los datos, lo que puede mejorar significativamente la precisión y el rendimiento del modelo.
Antes de hablar de la inteligencia artificial en el mercado Fintech nos gustaría mencionar que el término Fintech se aplica hoy en día para las tec [...]
Leer más »Una de las decisiones a las que se enfrenta una empresa que necesite una infraestructura de IT, es la de elegir en dónde se localiza esta infraestruc [...]
Leer más »Hoy vamos a explicar las diferencias que existen entre un CRM (Customer Relationship Management) tradicional y un CRM inteligente aplicando tecnologí [...]
Leer más »En los últimos años todos los temas referentes a la Inteligencia Artificial (IA) están levantando un enorme interés. Quizás sea porque el corazó [...]
Leer más »