El minado de datos (data mining en inglés) es un proceso automatizado de extracción de patrones significativos y conocimiento útil a partir de grandes conjuntos de datos. Se utiliza en el campo de la inteligencia artificial y el machine learning para descubrir relaciones y tendencias ocultas en los datos que pueden ser utilizados para tomar decisiones informadas y mejorar el rendimiento en diversas áreas, como la toma de decisiones empresariales, la predicción de resultados, el análisis de riesgos, la segmentación de clientes, la recomendación de productos, entre otros.
El proceso de minado de datos implica la utilización de técnicas y algoritmos de análisis de datos, tales como la regresión, la clasificación, el clustering, la asociación y la minería de secuencias, entre otros. Estas técnicas permiten identificar patrones en los datos que pueden ser utilizados para tomar decisiones informadas y mejorar el rendimiento en diversas áreas.
Referencia: De Data Mining al descubrimiento de conocimientos en las bases de datos, Fayyad, U. y Piatetsky-Shapiro
Cada vez más empresas están aprovechando la información relevante que extraen de los datos que poseen y generan para mejorar sus procesos y descubr [...]
Leer más »Normalmente las siglas NPLs (Non Performing Loans) se utilizan en el ámbito financiero y es una realidad tanto en los bancos españoles como en los b [...]
Leer más »Muchas veces nos preguntamos dónde se aplica el Big Data y podemos suponer una gran relevancia de Big Data para los negocios. Esto explica el gran in [...]
Leer más »Las empresas de Software as a Service (SaaS) han ganado un enorme protagonismo en los últimos años, principalmente por lo novedoso de los productos [...]
Leer más »