ARX es un modelo estadístico utilizado en el análisis de series de tiempo y en la predicción de variables dinámicas. ARX es un acrónimo de "AutoRegressive model with eXogenous inputs".
El modelo ARX es una extensión del modelo autoregresivo (AR) que incorpora variables exógenas (X) para modelar la relación entre una variable de interés y otras variables explicativas. El modelo ARX es útil cuando los valores futuros de la variable de interés pueden depender de los valores pasados de la misma variable, así como de los valores pasados de otras variables relacionadas.
En la práctica, el modelo ARX se puede ajustar a los datos mediante la identificación de los parámetros de AR y X que mejor describen la serie de tiempo. Luego, se puede utilizar el modelo ajustado para hacer predicciones futuras o para analizar la relación entre la variable de interés y las variables exógenas.
El modelo ARX es un modelo más simple que el modelo ARMAX, ya que solo considera la relación entre la variable de interés y las variables exógenas a través de un término autoregresivo. Sin embargo, el modelo ARX sigue siendo útil en muchos casos en los que la inclusión de términos de media móvil o de más de una variable exógena no es necesaria o no es posible.
El contenido de este artículo sintetiza parte del capítulo “Concepto y breve historia de la Inteligencia Artificial” de la tesis Generación de [...]
Leer más »El Procesamiento del Lenguaje Natural o NLP analiza cómo las máquinas entienden, interpretan y procesan el lenguaje humano.
Leer más »Las principales aplicaciones de IA como la mayoría de apps están al alcance de muchas empresas y permiten que grandes cantidades de datos sean anali [...]
Leer más »Las empresas son cada día más conscientes de la importancia de incorporar paulatinamente la inteligencia artificial a sus modelos de negocio. La imp [...]
Leer más »