El aprendizaje por transferencia es una técnica de machine learning que consiste en utilizar el conocimiento adquirido por un modelo entrenado en una tarea específica para mejorar el rendimiento de otro modelo en una tarea relacionada pero diferente.
En el aprendizaje por transferencia, se utiliza un modelo pre-entrenado, llamado modelo fuente, que ha aprendido a resolver una tarea específica, para inicializar los pesos del modelo de destino, que se utiliza para resolver una tarea relacionada pero diferente. La idea detrás del aprendizaje por transferencia es que el modelo pre-entrenado ya ha aprendido características generales y útiles del dominio de la tarea fuente, que también pueden ser útiles para la tarea de destino.
El aprendizaje por transferencia se utiliza comúnmente en aplicaciones de visión por computadora y procesamiento de lenguaje natural, donde los datos de entrenamiento pueden ser limitados o costosos de obtener. También se utiliza en casos donde la tarea objetivo es lo suficientemente diferente de la tarea fuente, como para requerir una adaptación del modelo, pero aún hay algunas similitudes que se pueden aprovechar.
El mundo está experimentando un crecimiento exponencial en la generación de datos con una escala cada vez mayor. Según IDC (International Data Corp [...]
Leer más »Las empresas de Software as a Service (SaaS) han ganado un enorme protagonismo en los últimos años, principalmente por lo novedoso de los productos [...]
Leer más »El software de detección de fraude es una herramienta importante para proteger las empresas y los individuos de la actividad fraudulenta y minimizar [...]
Leer más »Desde 2008, varios países han promulgado leyes que reconocen la importancia de integrar la inteligencia artificial (IA) en ámbitos clave de la vida [...]
Leer más »