El aprendizaje por transferencia es una técnica de machine learning que consiste en utilizar el conocimiento adquirido por un modelo entrenado en una tarea específica para mejorar el rendimiento de otro modelo en una tarea relacionada pero diferente.
En el aprendizaje por transferencia, se utiliza un modelo pre-entrenado, llamado modelo fuente, que ha aprendido a resolver una tarea específica, para inicializar los pesos del modelo de destino, que se utiliza para resolver una tarea relacionada pero diferente. La idea detrás del aprendizaje por transferencia es que el modelo pre-entrenado ya ha aprendido características generales y útiles del dominio de la tarea fuente, que también pueden ser útiles para la tarea de destino.
El aprendizaje por transferencia se utiliza comúnmente en aplicaciones de visión por computadora y procesamiento de lenguaje natural, donde los datos de entrenamiento pueden ser limitados o costosos de obtener. También se utiliza en casos donde la tarea objetivo es lo suficientemente diferente de la tarea fuente, como para requerir una adaptación del modelo, pero aún hay algunas similitudes que se pueden aprovechar.
La inteligencia artificial (IA) y el aprendizaje automático (ML) son dos de las tecnologías más populares utilizadas para construir sistemas inteli [...]
Leer más »Existe consenso entre los directivos de las principales empresas del mundo acerca del impacto crucial que la Inteligencia Artificial (IA) en el sector [...]
Leer más »Las principales aplicaciones de IA como la mayoría de apps están al alcance de muchas empresas y permiten que grandes cantidades de datos sean anali [...]
Leer más »Las empresas son cada día más conscientes de la importancia de incorporar paulatinamente la inteligencia artificial a sus modelos de negocio. La imp [...]
Leer más »