El aprendizaje basado en casos (CBL, por sus siglas en inglés) es un método de aprendizaje de máquina en el que un sistema aprende a partir de la resolución de casos previos similares a la tarea actual.
En este método, el sistema utiliza una base de casos que contiene una serie de casos previamente resueltos que son similares a la tarea actual. El sistema utiliza esta información para buscar casos similares y aplicar la solución previa a la tarea actual.
El proceso de CBL se compone de tres fases: la recuperación, la adaptación y la evaluación. En la fase de recuperación, el sistema busca casos similares en la base de datos. En la fase de adaptación, el sistema modifica la solución del caso anterior para adaptarse a la tarea actual. En la fase de evaluación, el sistema evalúa la solución propuesta y la compara con la solución óptima.
El aprendizaje basado en casos es utilizado en diversas aplicaciones, como en la resolución de problemas de diagnóstico médico, el reconocimiento de patrones, la toma de decisiones, la planificación de tareas, entre otros.
El deep learning se traduce como aprendizaje profundo y es un tipo de inteligencia artificial (IA) que se encuentra englobado dentro del machine learn [...]
Leer más »En un mercado sobresaturado de información como el actual, cada vez es más difícil retener a los usuarios. Para las empresas, la competencia es cad [...]
Leer más »Una vez que se tenga claro los conceptos base para construir un software comercial con inteligencia artificial donde se define a quién dedicar esfuer [...]
Leer más »Muchas veces nos preguntamos dónde se aplica el Big Data y podemos suponer una gran relevancia de Big Data para los negocios. Esto explica el gran in [...]
Leer más »