El aprendizaje basado en casos (CBL, por sus siglas en inglés) es un método de aprendizaje de máquina en el que un sistema aprende a partir de la resolución de casos previos similares a la tarea actual.
En este método, el sistema utiliza una base de casos que contiene una serie de casos previamente resueltos que son similares a la tarea actual. El sistema utiliza esta información para buscar casos similares y aplicar la solución previa a la tarea actual.
El proceso de CBL se compone de tres fases: la recuperación, la adaptación y la evaluación. En la fase de recuperación, el sistema busca casos similares en la base de datos. En la fase de adaptación, el sistema modifica la solución del caso anterior para adaptarse a la tarea actual. En la fase de evaluación, el sistema evalúa la solución propuesta y la compara con la solución óptima.
El aprendizaje basado en casos es utilizado en diversas aplicaciones, como en la resolución de problemas de diagnóstico médico, el reconocimiento de patrones, la toma de decisiones, la planificación de tareas, entre otros.
En la actualidad, los consumidores de cualquier tipo de producto o servicio se han vuelto exigentes. Hace tiempo que dejó de servirles cualquier cosa [...]
Leer más »La Industria 4.0 es el nombre dado a la cuarta revolución industrial que se caracteriza por la inclusión de tecnologías avanzadas en los procesos d [...]
Leer más »Los servicios o las soluciones en la nube (cloud computing), ya sea en España o en cualquier parte del mundo, son infraestructuras, plataformas o sis [...]
Leer más »El auge de la Inteligencia Artificial (IA) en los negocios está muy de actualidad. Su uso se está extendiendo y está cambiando, incluso, los modelo [...]
Leer más »