Los valores vacíos, también conocidos como valores nulos o valores faltantes, son aquellos que no tienen un valor definido en un conjunto de datos. Los valores vacíos pueden surgir por varias razones, como la falta de información, la eliminación de datos o la corrupción de datos.
En el aprendizaje automático, los valores vacíos pueden ser un problema importante porque muchos algoritmos de aprendizaje automático no pueden manejar valores vacíos. La presencia de valores vacíos puede causar errores en el análisis y la predicción de datos. Además, la eliminación de registros que contienen valores vacíos puede reducir significativamente el tamaño del conjunto de datos y afectar el rendimiento del modelo.
Existen diferentes técnicas para manejar valores vacíos en el aprendizaje automático, como la eliminación de registros con valores vacíos, la imputación de valores, la asignación de valores predeterminados y el modelado de los valores vacíos como una característica separada. La elección de la técnica adecuada dependerá del problema específico y de la cantidad y distribución de los valores vacíos en el conjunto de datos.
Normalmente, el Aprendizaje Automático se utiliza para resolver problemas comerciales en diversos sectores y áreas donde se aplican diferentes algor [...]
Leer más »La moda que viene de USA y obligará a incorporar la IA en el proceso Seguramente hace poco tiempo que hemos empezado a escuchar un nuevo concepto en [...]
Leer más »Para saber cómo funciona la tecnología semántica, lo primero que debes saber es que se encarga de ayudar a los sistemas de inteligencia artificial [...]
Leer más »Los métodos de clustering, o agrupamiento, son una pieza fundamental en el proceso de análisis de los datos, pues permiten una segmentación automá [...]
Leer más »Aquí puedes editar tus preferencias sobre las cookies de este sitio web.
Las cookies de publicidad se utilizan para ofrecer a los visitantes anuncios y campañas de marketing relevantes. Estas cookies rastrean a los visitantes en todos los sitios web y recopilan información para ofrecer anuncios personalizados.
Las cookies analíticas se utilizan para entender cómo interactúan los visitantes con el sitio web. Estas cookies ayudan a proporcionar información sobre las métricas del número de visitantes, la tasa de rebote, la fuente de tráfico, etc.
Las cookies funcionales ayudan a realizar ciertas funcionalidades como compartir el contenido del sitio web en las plataformas de las redes sociales, recoger opiniones y otras características de terceros.
Las cookies necesarias son absolutamente imprescindibles para que el sitio web funcione correctamente. Estas cookies garantizan las funcionalidades básicas y las características de seguridad del sitio web, de forma anónima.
Otras cookies no categorizadas son aquellas que están siendo analizadas y que aún no han sido clasificadas en una categoría.