Los valores vacíos, también conocidos como valores nulos o valores faltantes, son aquellos que no tienen un valor definido en un conjunto de datos. Los valores vacíos pueden surgir por varias razones, como la falta de información, la eliminación de datos o la corrupción de datos.
En el aprendizaje automático, los valores vacíos pueden ser un problema importante porque muchos algoritmos de aprendizaje automático no pueden manejar valores vacíos. La presencia de valores vacíos puede causar errores en el análisis y la predicción de datos. Además, la eliminación de registros que contienen valores vacíos puede reducir significativamente el tamaño del conjunto de datos y afectar el rendimiento del modelo.
Existen diferentes técnicas para manejar valores vacíos en el aprendizaje automático, como la eliminación de registros con valores vacíos, la imputación de valores, la asignación de valores predeterminados y el modelado de los valores vacíos como una característica separada. La elección de la técnica adecuada dependerá del problema específico y de la cantidad y distribución de los valores vacíos en el conjunto de datos.
Existe un amplio consenso entre los directivos de las principales empresas del mundo acerca del impacto que va a tener la inteligencia artificial en e [...]
Leer más »La IA es la ciencia que marcará las diferencias entre dos compañías que compitan en el mismo sector. El aprendizaje automático y la inteligencia a [...]
Leer más »La integración de herramientas para análisis predictivo es ya habitual en las grandes empresas, pero gracias a la evolución y, sobre todo, a la dem [...]
Leer más »A la hora de buscar financiación para empresas, una de las fórmulas más utilizadas en la actualidad es el factoring. Se trata de un recurso no siem [...]
Leer más »