El sobreajuste, o overfitting en inglés, es un término utilizado en aprendizaje automático para describir un modelo que ha sido demasiado ajustado a los datos de entrenamiento, lo que resulta en un rendimiento deficiente en datos nuevos o no vistos. Es decir, el modelo se ha aprendido los datos de entrenamiento "de memoria", en lugar de capturar las relaciones subyacentes en los datos. Esto puede ocurrir cuando el modelo es demasiado complejo o se entrena durante demasiado tiempo, lo que lleva a una mayor capacidad del modelo para ajustarse a los datos de entrenamiento en lugar de generalizar a nuevos datos. Los métodos para evitar el sobreajuste incluyen la validación cruzada, la reducción de la complejidad del modelo y la adición de regularización.
Los servicios o las soluciones en la nube (cloud computing), ya sea en España o en cualquier parte del mundo, son infraestructuras, plataformas o sis [...]
Leer más »Para saber cómo funciona la tecnología semántica, lo primero que debes saber es que se encarga de ayudar a los sistemas de inteligencia artificial [...]
Leer más »Una de las decisiones a las que se enfrenta una empresa que necesite una infraestructura de IT, es la de elegir en dónde se localiza esta infraestruc [...]
Leer más »Seguramente te estés preguntando ¿Qué es un seguro de caución? ¿Y cómo ayuda a tu empresa? Y es que, en el entorno económico actual, [...]
Leer más »