LSTM (Long short-term memory) es un tipo de red neuronal recurrente (RNN) que se utiliza en el aprendizaje profundo para procesar y predecir secuencias de datos. La LSTM fue diseñada para abordar el problema de la desaparición del gradiente en las redes neuronales recurrentes tradicionales, que se produce cuando se retropropaga el error a través de múltiples capas y se pierde información importante en el proceso. La LSTM utiliza una estructura de celda con puertas que permite a la red controlar la cantidad de información que se almacena y se olvida en cada paso de tiempo, lo que la hace especialmente adecuada para el procesamiento de secuencias de datos a largo plazo. Las LSTMs se han utilizado con éxito en una amplia variedad de aplicaciones de aprendizaje profundo, como el procesamiento del lenguaje natural, el reconocimiento de voz, la generación de texto y la predicción de series temporales.
Lo primero que hay que conocer son los límites de la IA y tras dominar los conceptos base se podrá construir un gran software comercial con intelige [...]
Leer más »En este artículo vamos a centrarnos en cómo la inteligencia artificial (IA) puede aumentar la eficiencia y reducir los costes de su empresa mediante [...]
Leer más »La integración de herramientas para análisis predictivo es ya habitual en las grandes empresas, pero gracias a la evolución y, sobre todo, a la dem [...]
Leer más »Cobrar deudas, hoy en día, se está convirtiendo en una ardua tarea para muchas empresas o autónomos. Cada vez son más los bancos, servicios [...]
Leer más »