Una red generativa antagónica, también conocida como GAN (por sus siglas en inglés, Generative Adversarial Network), es un tipo de arquitectura de redes neuronales artificiales utilizada en el campo del aprendizaje automático para generar datos nuevos y originales a partir de datos de entrada.
La estructura de una GAN consta de dos redes neuronales: un generador y un discriminador. El generador recibe un conjunto de datos de entrada (por ejemplo, imágenes o texto) y genera nuevas muestras que se parecen a las muestras originales. El discriminador, por otro lado, evalúa la calidad de las muestras generadas y trata de distinguir si son reales o falsas.
Durante el entrenamiento, el generador intenta engañar al discriminador generando muestras que sean cada vez más similares a las muestras originales, mientras que el discriminador intenta detectar las diferencias entre las muestras generadas y las muestras originales. Este proceso de competencia y retroalimentación entre el generador y el discriminador continúa hasta que el generador es capaz de generar muestras que son prácticamente indistinguibles de las muestras originales.
Las GANs se han utilizado en una amplia variedad de aplicaciones, como la generación de imágenes y videos, la síntesis de voz y música, el procesamiento del lenguaje natural y la creación de modelos de juego. Además, las GANs han demostrado ser útiles para mejorar la calidad de los datos de entrada y para la transferencia de estilo.
Para identificar las necesidades del cliente es necesario conocer su opinión, pues esto sirve para detectar dónde debes mejorar, qué aceptación te [...]
Leer más »Existe un amplio consenso entre los directivos de las principales empresas del mundo acerca del impacto que va a tener la inteligencia artificial en e [...]
Leer más »Hoy vamos a hablar sobre cómo prever problemas de pagos y prever los problemas en aquellos clientes que actualmente no te lo están dando. En G [...]
Leer más »El escenario actual que estamos viviendo en España con la crisis sanitaria del COVID-19 ha provocado que muchas empresas hayan tenido que realizar ER [...]
Leer más »