K-means es un algoritmo de clustering utilizado en el campo del aprendizaje no supervisado. El objetivo del algoritmo es agrupar un conjunto de datos en K clusters, donde K es un número predefinido de clusters. El algoritmo comienza seleccionando K centroides al azar y asignando cada punto de datos al centroide más cercano. Luego, el algoritmo recalcula los centroides como la media de todos los puntos de datos asignados a cada centroide, y repite el proceso de asignación y recalculo de centroides hasta que la convergencia se alcanza y los centroides ya no cambian de posición significativamente. Como resultado se consigue dividir el espacio de los datos en K celdas de Voronoi (uno por centroide), pudiendo asociar cada observación de entrada al centroide más cercano. El algoritmo K-means es ampliamente utilizado en tareas de segmentación de clientes, clasificación de texto y procesamiento de imágenes, entre otras aplicaciones.
El uso de Inteligencia Artificial en los negocios es cada vez más común y necesario para la optimización y evolución de los procesos. En uno de nu [...]
Leer más »El término Business Intelligence (o BI) define el uso de tecnologías de la información para identificar, descubrir y analizar datos comerciales, co [...]
Leer más »La Automatización Inteligente de Procesos en las empresas ha cambiado en el mundo de forma muy rápida en los últimos años. El COVID-19, las interr [...]
Leer más »El sector bancario ha experimentado transformaciones considerables durante los últimos 10 años. Especialmente a medida que la banca se ha ido integr [...]
Leer más »