El mínimo error de clasificación (MCE, por sus siglas en inglés) es una medida de la calidad de un modelo de clasificación en inteligencia artificial y machine learning. Esta medida se refiere a la tasa de error más baja que se puede lograr al clasificar los datos de un conjunto de prueba.
El MCE se utiliza para evaluar la capacidad de un modelo de clasificación para generalizar a datos nuevos y no vistos, lo que se conoce como capacidad de generalización. Un modelo con un MCE bajo es capaz de clasificar correctamente la mayoría de los datos de prueba y tiene una mejor capacidad de generalización que un modelo con un MCE alto.
El MCE se determina mediante la comparación de las predicciones del modelo con las etiquetas reales de los datos de prueba. El error de clasificación se define como la proporción de ejemplos que se clasifican incorrectamente. El MCE se alcanza cuando se encuentra el valor mínimo de error de clasificación posible para el modelo, lo que implica que el modelo es lo más preciso posible en la tarea de clasificación.
El MCE es una medida importante en el desarrollo y evaluación de modelos de clasificación en inteligencia artificial y machine learning, ya que permite comparar la calidad de diferentes modelos y seleccionar el mejor para una tarea específica. Además, el MCE puede ayudar a identificar las áreas en las que el modelo necesita mejoras para mejorar su capacidad de generalización.
También se puede considerar como una variante del método de LVQ (Learning Vector Quantization). En este sentido, MCE es una técnica de entrenamiento que utiliza el criterio de mínimo error de clasificación para ajustar los pesos de los vectores de codificación en la red de LVQ. El objetivo de MCE es minimizar la tasa de error de clasificación, es decir, la proporción de muestras clasificadas incorrectamente. MCE utiliza una función de costo que mide la discrepancia entre la salida de la red y el valor esperado de la salida para cada muestra de entrenamiento.
MCE se utiliza en problemas de clasificación binaria y multiclase, y es útil cuando la cantidad de muestras de entrenamiento es limitada o cuando las clases son desequilibradas.
Reference: Biing-Hwang Juang and Shigeru Katagiri. Discriminative learning for minimum error classication.
La implantación masiva de servicios en la nube en las empresas ha transformado el modo en que se realizaban las transacciones comerciales, pues conll [...]
Leer más »Para identificar las necesidades del cliente es necesario conocer su opinión, pues esto sirve para detectar dónde debes mejorar, qué aceptación te [...]
Leer más »El Churn, o la tasa de pérdida de clientes, representa un desafío constante para las empresas actuales. La capacidad para retener a los clientes exi [...]
Leer más »Lograr las metas empresariales y hacer un seguimiento del éxito es un aspecto importante para mejorar en cualquier negocio. En ventas, medir el progr [...]
Leer más »Aquí puedes editar tus preferencias sobre las cookies de este sitio web.
Las cookies de publicidad se utilizan para ofrecer a los visitantes anuncios y campañas de marketing relevantes. Estas cookies rastrean a los visitantes en todos los sitios web y recopilan información para ofrecer anuncios personalizados.
Las cookies analíticas se utilizan para entender cómo interactúan los visitantes con el sitio web. Estas cookies ayudan a proporcionar información sobre las métricas del número de visitantes, la tasa de rebote, la fuente de tráfico, etc.
Las cookies funcionales ayudan a realizar ciertas funcionalidades como compartir el contenido del sitio web en las plataformas de las redes sociales, recoger opiniones y otras características de terceros.
Las cookies necesarias son absolutamente imprescindibles para que el sitio web funcione correctamente. Estas cookies garantizan las funcionalidades básicas y las características de seguridad del sitio web, de forma anónima.
Otras cookies no categorizadas son aquellas que están siendo analizadas y que aún no han sido clasificadas en una categoría.